Q1	D ~ N(2018, σ = 96)		When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables penalise the first occurrence only.	
(i)	Systematic Sampling. It lacks any element of randomness.	B1 E1	May be implied by the next mark. Allow	
			reasonable alternatives e.g. "the list may contain cycles."	
	Choose a random starting point in the range 1 – 10.	E1	Beware proposals for a different sampling method.	[3]
(ii)	$P(D > 2100) = P\left(Z > \frac{2100 - 2018}{96} = 0.8542\right)$	M1 A1	For standardising. Award once, here or elsewhere.	
	= 1 - 0.8034 = 0.1966	A1	c.a.o.	[3]
(iii)	$D_1 + D_2 + D_3 \sim N(6054,$	B1	Mean.	
	$\sigma^2 = 96^2 + 96^2 + 96^2 = 27648 $	B1	Variance. Accept sd (= 166.277).	
	P(this < 6000) = P $\left(Z < \frac{6000 - 6054}{166.277} = -0.3248\right)$ = 1 - 0.6273 = 0.3727	A1	c.a.o.	
	Must assume that the months are independent.	E1	Reference to independence of months.	
	This is unlikely to be realistic since e.g. consecutive months may not be independent.	E1	Any sensible comment.	[5]
(iv)	Claim ~ N(2018 × 0.45 + 21200 × 0.10 = 3028.10,	M1	Mean.	
		A1	c.a.o.	
	$96^{\circ} \times 0.45^{\circ} + 1100^{\circ} \times 0.10^{\circ} = 13966.24$	MI A1	Variance. Accept sd (= 118.18).	
	P(3000 < this < 3300)	M1	Formulation of requirement: a two-sided	
	$= P\left(\frac{3000 - 3028.1}{118.18} < Z < \frac{3300 - 3028.1}{118.18}\right)$		inequaity.	
	= P(-0.2378 < Z < 2.3008)	A1	Ft c's parameters.	
	= 0.9893 - (1 - 0.5940) = 0.5833	A1	c.a.o.	[7]
			Total	[18]

4768

Q2				
(i)	 A <i>t</i> test might be used because sample is small population variance is unknown Must assume background population is Normal. 	B1 B1 B1		[3]
(ii)	H ₀ : $\mu = 1.040$ H ₁ : $\mu \neq 1.040$ where μ is the mean specific gravity of the mixture.	B1 B1	Both hypotheses. Hypotheses in words only must include "population". Do NOT allow " $\overline{X} =$ " or similar unless \overline{X} is clearly and explicitly stated to be a <u>population</u> mean. For adequate verbal definition. Allow absence of "population" if correct notation μ is used.	
	$\overline{x} = 1.0452$ $s_{n-1} = 0.007155$ Test statistic is $\frac{1.0452 - 1.040}{\frac{0.007155}{\sqrt{9}}}$	B1 M1	$s_n = 0.006746$ but do <u>NOT</u> allow this here or in construction of test statistic, but FT from there. Allow c's \overline{x} and/or s_{n-1} . Allow alternative: $1.040 + (c's 1.860) \times \frac{0.007155}{\sqrt{9}}$ (= 1.0444) for subsequent	
	= 2.189(60).	A1	comparison with \overline{x} . (Or $\overline{x} - (c's 860) \times \frac{0.007155}{\sqrt{9}}$ (= 1.0407) for comparison with 1.040.) c.a.o. but ft from here in any case if wrong. Use of $1.040 - \overline{x}$ scores M1A0, but ft.	
	 Refer to t₈. Double-tailed 10% point is 1.860. Significant. Seems mean specific gravity in the mixture does not meet the requirement. 	M1 A1 A1 A1	No ft from here if wrong. P(t > 2.1896) = 0.05996. No ft from here if wrong. ft only c's test statistic. ft only c's test statistic.	[9]
(iii)	CI is given by $1.0452 \pm 2.306 \times \frac{0.007155}{\sqrt{9}}$	M1 B1 M1		
	= $1.0452 \pm 0.0055 = (1.039(7), 1.050(7))$ In repeated sampling, 95% of confidence intervals constructed in this way will contain the true population mean.	A1 E2	c.a.o. Must be expressed as an interval. ZERO/4 if not same distribution as test. Same wrong distribution scores maximum M1B0M1A0. Recovery to t_8 is OK. E2, 1, 0.	[6]
1		1	Total	[18]

4768

Q3													
(a) (i)	Use paired data in order to eliminate differences between authorities.												[1]
(ii)	$H_0: m = 0$ $H_1: m > 0$ where <i>m</i> is the population median difference.						B1 B1	Both. Acc Adequate "populatic	ept hypoth definition on".	heses in of <i>m</i> to	word inclu	ls. ide	
	Diff (Af	ter – Befor	re) 6	-1	5	-4	↓ <u>-3</u>	11 9	8	2	9		
(b)	Rank of diff 6154 $W = 1 + 3 + 4 = 8$ (or = 2+5+6+7+8+9 = 37)Refer to tables of Wilcoxon paired (/single sample) statistic for $n = 9$. Lower 5% point is 8 (or upper is 37 if W_+ used). Result is significant. Evidence suggests the percentage has been raised (on the whole).H_0: Stock market prices can be modelled by Benford's H_1: Stock market prices can not be modelled by Benford				e) (on ord's Benfor	 M1 For differences. ZERO in this section if differences not used. M1 For ranks. A1 FT from here if ranks wrong B1 M1 No ft from here if wrong. A1 i.e. a 1-tail test. No ft from here if wrong. A1 ft only c's test statistic. A1 ft only c's test statistic. s Law. ord's Law. 					[10]		
	Prob Exp f	0.301	0.176	0.125	0.09	7	0.079	0.067	0.058	0.05	51 2	0.046	
	Obs f	55	33.2	23.0	19	t	15.8	13.4	11.0	10.	5	9.2	
	$X^{2} = 0.44917 + 0.04091 + 0.16 + 0.59588 + 0.04051 + 0.96716 + 0.01379 + 2.25882 + 0.00435$						M1 M1	Probs × 200 for expected frequencies. All correct. Calculation of X^2 .					
	= 4.5305(9) Refer to χ_8^2 .						Al M1	A1 c.a.o. M1 Allow correct df (= cells – 1) from wrongly grouped table and ft. Otherwise, no ft if wrong. $P(X^2 > 4.53059) = 0.80636.$					
	Upper 5% point is 13.36. Not significant. Suggests Benford's Law provides a reasonable model in the context of share prices.						A1 A1 A1	A1 No ft from here if wrong.A1 ft only c's test statistic.A1 ft only c's test statistic.				[7]	
										Total	[18]		

June 2010

		1		
Q4	$f(x) = \lambda e^{-\lambda x}$ for $x \ge 0$, where $\lambda > 0$.		Given $\int_0^\infty x^r e^{-\lambda x} dx = \frac{r!}{\lambda^{r+1}}$	
(i)	$\int_0^\infty f(x) dx = \int_0^\infty \lambda e^{-\lambda x} dx$ $= \left[-e^{-\lambda x} \right]_0^\infty$ $= \left(0 - (-e^0) \right) = 1$	M1 M1 A1	Integration of f(<i>x</i>). Use of limits or the given result. Convincingly obtained (Answer given.)	
	×	G1 G1	Curve, with negative gradient, in the first quadrant only. Must intersect the <i>y</i> -axis. $(0, \lambda)$ labelled; asymptotic to x-axis.	[5]
(ii)	$E(X) = \int_0^\infty \lambda x e^{-\lambda x} dx$ $= \lambda \frac{1}{x^2} = \frac{1}{x^2}$	M1	Correct integral.	
	$E(X^{2}) = \int_{0}^{\infty} \lambda x^{2} e^{-\lambda x} dx$	M1	Correct integral.	
	$= \lambda \frac{2}{\lambda^3} = \frac{2}{\lambda^2}$ Var(X) = E(X ²) - E(X) ² = $\frac{2}{\lambda^2} - \left(\frac{1}{\lambda}\right)^2 = \frac{1}{\lambda^2}$	A1 M1 A1	c.a.o. (using given result) Use of $E(X^2) - E(X)^2$	[6]
(iii)	$\mu = 6 \qquad \therefore \lambda = \frac{1}{6}$ $\overline{X} \sim (\text{approx}) \operatorname{N}\left(6, \frac{6^2}{50}\right)$	B1 B1 B1 B1 B1	Obtained λ from the mean. Normal. Mean. ft c's λ . Variance. ft c's λ .	[4]
(iv)	EITHER can argue that 7.8 is more than 2 SDs from μ . $(6+2\sqrt{0.72} = 7.697;$ <u>must</u> refer to SD (\overline{X}), not SD(X))	M1	A 95% C.I would be (6.1369, 9.4631).	
	$\Rightarrow \text{ doubt.}$ $\underline{OR} \qquad \text{formal significance test:}$	M1 A1 M1		[3]
	$\frac{7.8-6}{\sqrt{0.72}} = 2.121$, refer to N(0,1), sig at (eg) 5% \Rightarrow doubt.	M1 A1	Depends on first M, but could imply it. P($ Z > 2.121$)= 0.0339	
			Total	[18]